Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 868
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338779

RESUMO

The development of drugs for the treatment of acute kidney injury (AKI) that could suppress the excessive inflammatory response in damaged kidneys is an important clinical challenge. Recently, synaptamide (N-docosahexaenoylethanolamine) has been shown to exert anti-inflammatory and neurogenic properties. The aim of this study was to investigate the anti-inflammatory effect of synaptamide in ischemic AKI. For this purpose, we analyzed the expression of inflammatory mediators and the infiltration of different leukocyte populations into the kidney after injury, evaluated the expression of the putative synaptamide receptor G-protein-coupled receptor 110 (GPR110), and isolated a population of CD11b/c+ cells mainly representing neutrophils and macrophages using cell sorting. We also evaluated the severity of AKI during synaptamide therapy and the serum metabolic profile. We demonstrated that synaptamide reduced the level of pro-inflammatory interleukins and the expression of integrin CD11a in kidney tissue after injury. We found that the administration of synaptamide increased the expression of its receptor GPR110 in both total kidney tissue and renal CD11b/c+ cells that was associated with the reduced production of pro-inflammatory interleukins in these cells. Thus, we demonstrated that synaptamide therapy mitigates the inflammatory response in kidney tissue during ischemic AKI, which can be achieved through GPR110 signaling in neutrophils and a reduction in these cells' pro-inflammatory interleukin production.


Assuntos
Injúria Renal Aguda , Etanolaminas , Receptores Acoplados a Proteínas G , Traumatismo por Reperfusão , Animais , Ratos , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Anti-Inflamatórios/metabolismo , Interleucinas/metabolismo , Rim/metabolismo , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
2.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686217

RESUMO

Urotensin 2 (Uts2) is a biologically active peptide involved in the regulation of a variety of physiological and pathophysiological processes. In both the human and rat adrenal gland, the expressions of the Uts2 gene and its receptor (Uts2r) have been described. This paper focuses on the description of the hormonal control of the mRNA levels of urotensin II and its receptor in the adrenal gland of the rat, both in vitro and in vivo. The initial in vitro experiments were carried out on freshly isolated rat adrenocortical cells and their primary culture. The obtained results indicated a stimulating PKA-independent effect of ACTH on the Uts2 mRNA level in the tested cells, with no changes in the Uts2r transcript. Subsequent in vivo experiments showed that ACTH-induced adrenal growth was accompanied by an elevated level of the Uts2 mRNA, with unchanged expression of Uts2r. In the other types of in vivo gland growth studied, enucleation-induced adrenal regeneration and compensatory growth of the gland, the mRNA levels of the studied genes showed no significant differences. The only exception was hemiadrenalectomy, which led to a significant increase in Uts2 mRNA expression level 24 h after surgery. In 12-week-old rats of both sexes, gonadectomy led to a significant increase in the level of Uts2 mRNA in the adrenal gland, an effect that was prevented by sex hormones' replacement. No changes in Uts2r transcript levels were observed under these conditions. Thus, this study suggests that the regulation of Uts2 and Uts2r mRNA levels differs significantly in the rat adrenal gland. While Uts2 transcript levels appear to be mainly dependent on ACTH action, Uts2r mRNA levels are not under the control of this hormone.


Assuntos
Secretagogos , Urotensinas , Animais , Feminino , Humanos , Masculino , Ratos , Glândulas Suprarrenais , Hormônio Adrenocorticotrópico , RNA Mensageiro/genética , Urotensinas/efeitos dos fármacos , Urotensinas/genética , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética
3.
Mol Psychiatry ; 27(12): 4861-4868, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36045279

RESUMO

Trace amine-associated receptor 1 (TAAR1) has been recently identified as a target for the future antidepressant, antipsychotic, and anti-addiction drugs. Full (e.g. RO5256390) and partial (e.g. RO5263397) TAAR1 agonists showed antidepressant-, antipsychotic- and anti-addiction-like behavioral effects in rodents and primates. Acute RO5256390 suppressed, and RO5263397 stimulated serotonin (5-HT) neurons of the dorsal raphe nucleus (DRN) and dopamine neurons of the ventral tegmental area (VTA) in brain slices, suggesting that the behavioral effects of TAAR1 ligands involve 5-HT and dopamine. For more comprehensive testing of this hypothesis, we examined acute and chronic effects of RO5256390 and RO5263397 on monoamine neurons in in vivo conditions. Excitability of 5-HT neurons of the DRN, noradrenaline neurons of the locus coeruleus (LC), and dopamine neurons of the VTA was assessed using single-unit electrophysiology in anesthetized rats. For acute experiments, RO5256390 and RO5263397 were administered intravenously; neuronal excitability after RO5256390 and RO5263397 administration was compared to the basal activity of the same neuron. For chronic experiments, RO5256390 was administered orally for fourteen days prior to electrophysiological assessments. The neuronal excitability in RO5256390-treated rats was compared to vehicle-treated controls. We found that acute RO5256390 inhibited 5-HT and dopamine neurons. This effect of RO5256390 was reversed by the subsequent and prevented by the earlier administration of RO5263397. Acute RO5256390 and RO5263397 did not alter the excitability of LC noradrenaline neurons in a statistically significant way. Chronic RO5256390 increased excitability of 5-HT neurons of the DRN and dopamine neurons of the VTA. In conclusion, the putative antidepressant and antipsychotic effects of TAAR1 ligands might be mediated, at least in part, via the modulation of excitability of central 5-HT and dopamine neurons.


Assuntos
Antipsicóticos , Receptores Acoplados a Proteínas G , Animais , Ratos , Antipsicóticos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Norepinefrina , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/farmacologia
4.
Biomed Pharmacother ; 148: 112770, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35278853

RESUMO

Traumatic brain injury (TBI) affects approximately 50% of the world population at some point in their lifetime. To date, there are no effective treatments as most of the damage occurs due to secondary effects through a variety of pathophysiological pathways. The phytoceutical curcumin has been traditionally used as a natural remedy for numerous conditions including diabetes, inflammatory diseases, and neurological and neurodegenerative disorders. We have carried out a system pharmacology study to identify potential targets of a difluorinated curcumin analogue (CDF) that overlap with those involved in the pathophysiological mechanisms of TBI. This resulted in identification of 312 targets which are mostly involved in G protein-coupled receptor activity and cellular signalling. These include adrenergic, serotonergic, opioid and cannabinoid receptor families, which have been implicated in regulation of pain, inflammation, mood, learning and cognition pathways. We conclude that further studies should be performed to validate curcumin as a potential novel treatment to ameliorate the effects of TBI.


Assuntos
Lesões Encefálicas Traumáticas/patologia , Curcumina/farmacologia , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Curcumina/química , Inflamação/patologia , Farmacologia em Rede , Estresse Oxidativo/efeitos dos fármacos , Mapas de Interação de Proteínas , Transdução de Sinais/efeitos dos fármacos
5.
J Med Chem ; 65(4): 3218-3228, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35119273

RESUMO

Mas-related G protein-coupled receptor X1 (MRGPRX1) is a human sensory neuron-specific receptor and potential target for the treatment of pain. Positive allosteric modulators (PAMs) of MRGPRX1 have the potential to preferentially activate the receptors at the central terminals of primary sensory neurons and minimize itch side effects caused by peripheral activation. Using a high-throughput screening (HTS) hit, a series of thieno[2,3-d]pyrimidine-based molecules were synthesized and evaluated as human MRGPRX1 PAMs in HEK293 cells stably transfected with human MrgprX1 gene. An iterative process to improve potency and metabolic stability led to the discovery of orally available 6-(tert-butyl)-5-(3,4-dichlorophenyl)-4-(2-(trifluoromethoxy)phenoxy)thieno[2,3-d]pyrimidine (1t), which can be distributed to the spinal cord, the presumed site of action, following oral administration. In a neuropathic pain model induced by sciatic nerve chronic constriction injury (CCI), compound 1t (100 mg/kg, po) reduced behavioral heat hypersensitivity in humanized MRGPRX1 mice, demonstrating the therapeutic potential of MRGPRX1 PAMs in treating neuropathic pain.


Assuntos
Pirimidinas/farmacologia , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Regulação Alostérica , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cromatografia Líquida , Células HEK293 , Humanos , Masculino , Espectrometria de Massas/métodos , Camundongos , Espectroscopia de Prótons por Ressonância Magnética , Pirimidinas/química , Pirimidinas/farmacocinética , Receptores Acoplados a Proteínas G/metabolismo
6.
Neuropharmacology ; 207: 108942, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35026287

RESUMO

INTRODUCTION: Brain imaging studies have highlighted that the density of dopamine D2 receptors markedly fluctuates across the stages of Parkinson's disease and in response to pharmacological treatment. Moreover, receptor density constitutes a molecular determinant for the signaling profile of D2 receptor ligands. We therefore hypothesized that variations in receptor expression could influence D2 receptor response to antiparkinsonian drugs, most notably with respect to the recruitment bias between Gi1 and ß-arrestin2. METHODS: The recruitment bias of dopamine, pramipexole, ropinirole, and rotigotine was examined using a nanoluciferase-based biosensor for probing the interactions of the D2L receptor with either Gi1 or ß-arrestin2. The characterization of the functional selectivity of these D2 receptor agonists was performed at two distinct D2L receptor densities by taking advantage of a cell model carrying an inducible system that enables the overexpression of the D2L receptor when exposed to doxycycline. RESULTS: A high receptor density oriented the balanced signaling profile of dopamine towards a preferential recruitment of Gi1. It also moderated the marked Gi1 and ß-arrestin2 biases of pramipexole and rotigotine, respectively. At variance, the Gi1 bias of ropinirole appeared as not being influenced by D2L receptor density. CONCLUSIONS: Taken together, these observations highlight receptor density as a key driver of the signaling transducer recruitment triggered by antiparkinsonian agents. Moreover, given the putative beneficial properties of ß-arrestin2 in promoting locomotion, this study provides molecular insights that position the arrestin-biased ligand rotigotine as a putatively more beneficial D2 receptor agonist for the treatment of early and late Parkinson's disease.


Assuntos
Antiparkinsonianos/farmacologia , Agonistas de Dopamina/farmacologia , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de Dopamina D2/metabolismo , Receptores Acoplados a Proteínas G/efeitos dos fármacos , beta-Arrestina 2/efeitos dos fármacos , Técnicas Biossensoriais , Dopamina/farmacologia , Humanos , Indóis/farmacologia , Luciferases , Pramipexol/farmacologia , Receptores de Dopamina D2/agonistas , Tetra-Hidronaftalenos/farmacologia , Tiofenos/farmacologia
7.
Biomed Pharmacother ; 147: 112649, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35051858

RESUMO

Ankyrin repeat domain 22 (ANKRD22) is a nuclear-encoded mitochondrial membrane protein that is highly expressed in normal gastric mucosal epithelial cells and activated macrophages. As a regulator of mitochondrial Ca2+, ANKRD22 could help repair damaged gastric mucosa by promoting the mobilization of LGR5+ gastric epithelial cells via the upregulation of Wnt/ß-catenin pathway activity in a mouse model. Furthermore, the inhibition of ANKRD22 alleviated the macrophage activation-mediated inflammatory response by reducing the phosphorylation of nuclear factor of activated T cells (NFAT). ANKRD22 plays a significant role in the repair of gastric mucosal damage and may become an ideal novel target for the treatment of gastric mucosal injury. However, there is no systematic introduction to ANKRD22 targeting. Therefore, we wrote this review to elaborate the functional mechanism of ANKRD22 in gastric mucosal injury and to analyze its potential application value in clinical therapy.


Assuntos
Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/lesões , Mucosa Gástrica/patologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/farmacologia , Animais , Biomarcadores , Canais de Cálcio/efeitos dos fármacos , Regulação para Baixo , Células Epiteliais/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Camundongos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos
8.
Neuropharmacology ; 205: 108927, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34921829

RESUMO

Activation of microglia and astrocytes following germinal matrix hemorrhage and intraventricular hemorrhage (GMH-IVH) plays a detrimental role in posthemorrhagic hydrocephalus (PHH). It is still unclear whether or how an interaction occurs between microglia and astrocytes in PHH. Here, we investigated the role of the C3/C3aR pathway in microglia and astrocyte interactions and whether C3/C3aR-targeted inhibition could alleviate PHH following GMH-IVH. A total of 152 Sprague-Dawley rats at postnatal day seven (P7) were enrolled in the study, and collagenase VII was used to induce GMH-IVH. Minocycline (45 mg/kg) was administered to inhibit microglial activation. Complement C3a peptide and C3aR antagonist (SB 290157, 10 mg/kg) were used to regulate the C3/C3aR pathway. As a result, the data demonstrated that periventricular C3aR+/Iba-1+ microglia and C3+/GFAP+ astrocytes were significantly increased in GMH-IVH pups at 28 days after surgery. Intranasal C3a peptide upregulated C3aR expression in microglia. Inhibition of microglia by minocycline decreased both C3+/GFAP+ astrocytes and the colocalization volume of Iba-1 and GFAP. In addition, intraperitoneally injected C3aRA alleviated the periventricular colocalization volume of microglia and astrocytes. Compared with vehicle-treated pups, the protein level of IL-1ß, IL-6 and TNF-α in cerebral spinal fluid and brain tissue at 28 days following GMH-IVH were reduced in C3aRA-treated pups. Moreover, hydrocephalus was alleviated, and long-term cognitive ability were improved in the C3aRA-treated group. Our data presented simultaneous periventricular astrogliosis and microgliosis of pups following GMH-IVH and proved their potential interaction through the C3/C3aR pathway, indicating C3aRA as a potential pharmacological treatment of PHH in neonates.


Assuntos
Arginina/análogos & derivados , Astrócitos/efeitos dos fármacos , Compostos Benzidrílicos/farmacologia , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Complemento C3a/farmacologia , Hidrocefalia/tratamento farmacológico , Microglia/efeitos dos fármacos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Arginina/administração & dosagem , Arginina/farmacologia , Compostos Benzidrílicos/administração & dosagem , Hemorragia Cerebral/complicações , Hemorragia Cerebral Intraventricular/complicações , Hemorragia Cerebral Intraventricular/tratamento farmacológico , Hemorragia Cerebral Intraventricular/metabolismo , Complemento C3a/administração & dosagem , Modelos Animais de Doenças , Hidrocefalia/etiologia , Hidrocefalia/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/antagonistas & inibidores
9.
J Med Chem ; 64(22): 16512-16529, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34767347

RESUMO

G-protein-coupled receptors (GPCRs) are the molecular target of 40% of marketed drugs and the most investigated structures to develop novel therapeutics. Different members of the GPCRs superfamily can modulate the same cellular process acting on diverse pathways, thus representing an attractive opportunity to achieve multitarget drugs with synergic pharmacological effects. Here, we present a series of compounds with dual activity toward cysteinyl leukotriene receptor 1 (CysLT1R) and G-protein-coupled bile acid receptor 1 (GPBAR1). They are derivatives of REV5901─the first reported dual compound─with therapeutic potential in the treatment of colitis and other inflammatory processes. We report the binding mode of the most active compounds in the two GPCRs, revealing unprecedented structural basis for future drug design studies, including the presence of a polar group opportunely spaced from an aromatic ring in the ligand to interact with Arg792.60 of CysLT1R and achieve dual activity.


Assuntos
Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores de Leucotrienos/efeitos dos fármacos , Animais , Colite/tratamento farmacológico , Humanos , Leucotrieno D4/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Ligação Proteica , Células RAW 264.7 , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Leucotrienos/metabolismo , Relação Estrutura-Atividade
10.
Molecules ; 26(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34577088

RESUMO

We report the first isolation of the alkaloid aaptamine from the Philippine marine sponge Stylissa sp. Aaptamine possessed weak antiproliferative activity against HCT116 colon cancer cells and inhibited the proteasome in vitro at 50 µM. These activities may be functionally linked. Due to its known, more potent activity on certain G-protein coupled receptors (GPCRs), including α-adrenergic and δ-opioid receptors, the compound was profiled more broadly at sub-growth inhibitory concentrations against a panel of 168 GPCRs to potentially reveal additional targets and therapeutic opportunities. GPCRs represent the largest class of drug targets. The primary screen at 20 µM using the ß-arrestin functional assay identified the antagonist, agonist, and potentiators of agonist activity of aaptamine. Dose-response analysis validated the α-adrenoreceptor antagonist activity of aaptamine (ADRA2C, IC50 11.9 µM) and revealed the even more potent antagonism of the ß-adrenoreceptor (ADRB2, IC50 0.20 µM) and dopamine receptor D4 (DRD4, IC50 6.9 µM). Additionally, aaptamine showed agonist activity on selected chemokine receptors, by itself (CXCR7, EC50 6.2 µM; CCR1, EC50 11.8 µM) or as a potentiator of agonist activity (CXCR3, EC50 31.8 µM; CCR3, EC50 16.2 µM). These GPCRs play a critical role in the treatment of cardiovascular disease, diabetes, cancer, and neurological disorders. The results of this study may thus provide novel preventive and therapeutic strategies for noncommunicable diseases (NCDs).


Assuntos
Alcaloides/farmacologia , Naftiridinas/farmacologia , Doenças não Transmissíveis/tratamento farmacológico , Poríferos/química , Antagonistas Adrenérgicos/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Regulação Alostérica/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Antagonistas de Dopamina/farmacologia , Humanos , Naftiridinas/química , Naftiridinas/isolamento & purificação , Filipinas , Receptores Adrenérgicos/efeitos dos fármacos , Receptores de Quimiocinas/agonistas , Receptores de Quimiocinas/efeitos dos fármacos , Receptores Dopaminérgicos/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos
11.
Mol Brain ; 14(1): 144, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34544455

RESUMO

Astrocytes express a plethora of G protein-coupled receptors (GPCRs) that are crucial for shaping synaptic activity. Upon GPCR activation, astrocytes can respond with transient variations in intracellular Ca2+. In addition, Ca2+-dependent and/or Ca2+-independent release of gliotransmitters can occur, allowing them to engage in bidirectional neuron-astrocyte communication. The development of designer receptors exclusively activated by designer drugs (DREADDs) has facilitated many new discoveries on the roles of astrocytes in both physiological and pathological conditions. They are an excellent tool, as they can target endogenous GPCR-mediated intracellular signal transduction pathways specifically in astrocytes. With increasing interest and accumulating research on this topic, several discrepancies on astrocytic Ca2+ signalling and astrocyte-mediated effects on synaptic plasticity have emerged, preventing a clear-cut consensus about the downstream effects of DREADDs in astrocytes. In the present study, we performed a side-by-side evaluation of the effects of bath application of the DREADD agonist, clozapine-N-oxide (10 µM), on Gq- and Gi-DREADD activation in mouse CA1 hippocampal astrocytes. In doing so, we aimed to avoid confounding factors, such as differences in experimental procedures, and to directly compare the actions of both DREADDs on astrocytic intracellular Ca2+ dynamics and synaptic plasticity in acute hippocampal slices. We used an adeno-associated viral vector approach to transduce dorsal hippocampi of male, 8-week-old C57BL6/J mice, to drive expression of either the Gq-DREADD or Gi-DREADD in CA1 astrocytes. A viral vector lacking the DREADD construct was used to generate controls. Here, we show that agonism of Gq-DREADDs, but not Gi-DREADDs, induced consistent increases in spontaneous astrocytic Ca2+ events. Moreover, we demonstrate that both Gq-DREADD as well as Gi-DREADD-mediated activation of CA1 astrocytes induces long-lasting synaptic potentiation in the hippocampal CA1 Schaffer collateral pathway in the absence of a high frequency stimulus. Moreover, we report for the first time that astrocytic Gi-DREADD activation is sufficient to elicit de novo potentiation. Our data demonstrate that activation of either Gq or Gi pathways drives synaptic potentiation through Ca2+-dependent and Ca2+-independent mechanisms, respectively.


Assuntos
Astrócitos/fisiologia , Região CA1 Hipocampal/fisiologia , Sinalização do Cálcio/fisiologia , Clozapina/análogos & derivados , Drogas Desenhadas/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Astrócitos/efeitos dos fármacos , Região CA1 Hipocampal/citologia , Clozapina/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/efeitos dos fármacos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/efeitos dos fármacos , Vetores Genéticos/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Receptores Acoplados a Proteínas G/efeitos dos fármacos
12.
Biochem Soc Trans ; 49(4): 1555-1565, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34436548

RESUMO

Many receptors are able to undergo heteromerisation, leading to the formation of receptor complexes that may have pharmacological profiles distinct from those of the individual receptors. As a consequence of this, receptor heteromers can be classed as new drug targets, with the potential for achieving greater specificity and selectivity over targeting their constituent receptors. We have developed the Receptor-Heteromer Investigation Technology (Receptor-HIT), which enables the detection of receptor heteromers using a proximity-based reporter system such as bioluminescence resonance energy transfer (BRET). Receptor-HIT detects heteromers in live cells and in real time, by utilising ligand-induced signals that arise from altered interactions with specific biomolecules, such as ligands or proteins. Furthermore, monitoring the interaction between the receptors and the specific biomolecules generates functional information about the heteromer that can be pharmacologically quantified. This review will discuss various applications of Receptor-HIT, including its use with different classes of receptors (e.g. G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and others), its use to monitor receptor interactions both intracellularly and extracellularly, and also its use with genome-edited endogenous proteins.


Assuntos
Receptores Acoplados a Proteínas G/efeitos dos fármacos , Transferência de Energia , Humanos , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Acoplados a Proteínas G/química
13.
Biomed Pharmacother ; 142: 112078, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34449315

RESUMO

Fibroblast growth factor 21 (FGF21) acts as an endocrine factor, playing important roles in the regulation of energy homeostasis, glucose and lipid metabolism. It is induced by diverse metabolic and cellular stresses, such as starvation and cold challenge, which in turn facilitate adaptation to the stress environment. The pharmacological action of FGF21 has received much attention, because the administration of FGF21 or its analogs has been shown to have an anti-obesity effect in rodent models. In the present study, we found that 3-O-acetyloleanolic acid, an active constituent isolated from the fruits of Forsythia suspensa, stimulated FGF21 production concomitant with the up-regulation of a transcription factor, nuclear receptor Nr4a1, in C2C12 myotubes. Additionally, significant increases in mFgf21 promoter activity were observed in C2C12 cells overexpressing TGR5 receptor in response to 3-O-acetyloleanolic acid treatment. Treatment with the p38 MAPK inhibitor SB203580 was effective at suppressing these stimulatory effects of 3-O-acetyloleanolic acid. Pretreatment with SB203580 also significantly repressed FGF21 mRNA abundance and FGF21 secretion in C2C12 myotubes after 3-O-acetyloleanolic acid stimulation, suggesting that p38 activation is required for the induction of FGF21 by ligand-activated TGR5 in C2C12 myotubes. These findings collectively indicated that TGR5 receptor signaling drives FGF21 expression via p38 activation, at least partly, by mediating Nr4a1 expression. Thus, the novel biological function of 3-O-acetyloleanolic acid as an agent having anti-obesity effects is likely to be mediated through the activation of TGR5 receptors.


Assuntos
Fatores de Crescimento de Fibroblastos/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Fármacos Antiobesidade/isolamento & purificação , Fármacos Antiobesidade/farmacologia , Linhagem Celular , Forsythia/química , Masculino , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Triterpenos/isolamento & purificação , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Neurobiol Learn Mem ; 184: 107499, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34352396

RESUMO

Estrogens, particularly 17ß-estradiol (estradiol, E2), regulate memory formation. E2 acts through its intracellular receptors, estrogen receptors (ER) ERα and ERß, as well as a recently identified G protein-coupled estrogen receptor (GPER). Although the effects of E2 on memory have been investigated, studies examining the effects of GPER stimulation are scarce. Selective GPER agonism improves memory in ovariectomized female rats, but little information is available regarding the effects of GPER stimulation in male rodents. The aim of the present study was to investigate the effects of the GPER agonist, G1, on consolidation and reconsolidation of inhibitory avoidance (IA) and object recognition (OR) memory in male rats. Animals received vehicle, G1 (15, 75, 150 µg/kg; i.p.), or the GPER antagonist G15 (100 µg/kg; i.p.) immediately after training, or G1 (150 µg/kg; i.p.) 3 or 6 h after training. To investigate reconsolidation, G1 was administered immediately after IA retention Test 1. Results indicated that G1 administered immediately after training at the highest dose enhanced both OR and IA memory consolidation, while GPER blockade immediately after training impaired OR. No effects of GPER stimulation were observed when G1 was given 3 or 6 h after training or after Test 1. The present findings provide evidence that GPER is involved in the early stages of memory consolidation in both neutral and emotional memory tasks in male adult rats.


Assuntos
Memória/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Antagonistas do Receptor de Estrogênio/farmacologia , Estrogênios/farmacologia , Masculino , Memória/efeitos dos fármacos , Motivação/fisiologia , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos
15.
Mol Pharmacol ; 100(3): 271-282, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34330822

RESUMO

G protein-coupled receptor 30 (GPR30) is a membrane receptor reported to bind 17ß-estradiol (E2) and mediate rapid nongenomic estrogen responses, hence also named G protein-coupled estrogen receptor. G-1 is a proposed GPR30-specific agonist that has been used to implicate the receptor in several pathophysiological events. However, controversy surrounds the role of GPR30 in G-1 and E2 responses. We investigated GPR30 activity in the absence and presence of G-1 and E2 in several eukaryotic systems ex vivo and in vitro in the absence and presence of the receptor. Ex vivo activity was addressed using the caudal artery from wild-type (WT) and GPR30 knockout (KO) mice, and in vitro activity was addressed using a HeLa cell line stably expressing a synthetic multifunctional promoter (nuclear factor κB, signal transducer and activator of transcription, activator protein 1)-luciferase construct (HFF11 cells) and a human GPR30-inducible T-REx system (T-REx HFF11 cells), HFF11 and human embryonic kidney 293 cells transiently expressing WT GPR30 and GPR30 lacking the C-terminal PDZ (postsynaptic density-95/discs-large /zonula occludens-1 homology) motif SSAV, and yeast Saccharomyces cerevisiae transformed to express GPR30. WT and KO arteries exhibited similar contractile responses to 60 mM KCl and 0.3 µM cirazoline, and G-1 relaxed both arteries with the same potency and efficacy. Furthermore, expression of GPR30 did not introduce any responses to 1 µM G-1 and 0.1 µM E2 in vitro. On the other hand, receptor expression caused considerable ligand-independent activity in vitro, which was receptor PDZ motif-dependent in mammalian cells. We conclude from these results that GPR30 exhibits ligand-independent activity in vitro but no G-1- or E2-stimulated activity in any of the systems used. SIGNIFICANCE STATEMENT: Much controversy surrounds 17ß-estradiol (E2) and G-1 as G protein-coupled receptor 30 (GPR30) agonists. We used several recombinant eukaryotic systems ex vivo and in vitro with and without GPR30 expression to address the role of this receptor in responses to these proposed agonists. Our results show that GPR30 exhibits considerable ligand-independent activity in vitro but no G-1- or E2-stimulated activity in any of the systems used. Thus, classifying GPR30 as an estrogen receptor and G-1 as a specific GPR30 agonist is unfounded.


Assuntos
Ciclopentanos/farmacologia , Estradiol/farmacologia , Quinolinas/farmacologia , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Artérias/efeitos dos fármacos , Linhagem Celular , Proteína 4 Homóloga a Disks-Large/metabolismo , Feminino , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Relaxamento Muscular/efeitos dos fármacos , Domínios PDZ/genética , Receptores de Estrogênio/efeitos dos fármacos , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Saccharomyces cerevisiae/genética
16.
Pharmacol Res ; 170: 105738, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34157423

RESUMO

This paper describes evidence establishing that ultra-low doses of diverse chemical agents at concentrations from 10-18 to 10-24 M (e.g., approaching and/or less than 1 atom or molecule of a substance/cell based on Avogadro's constant - 6.022×1023/mole) are capable of engaging receptor and intracellular signaling systems to elicit reproducible effects in a variety of species, from unicellular organisms to humans. Multiple experimental studies have shown that only one or very few molecules are needed to activate a cell and/or entire organism via cascade(s) of amplification mechanisms and processes. For example, ultra-low dose ligand exposure was able to activate both an individual cell, and ~3000 to 25,000 neighboring cells on average, by about 50%. Such activation of cells and whole organisms typically displayed hormetic-biphasic dose responses. These findings indicate that numerous, diverse phylogenetic systems have evolved highly sensitive detection and signaling mechanisms to enhance survival functions, such as defense against infectious agents, responses to diverse types of pheromone communications (e.g., alarm, sexual attraction), and development of several types of cellular protection/resilience processes. This suggests that ultra-low dose effects may be far more common than have been recognized to date. We posit that such findings have important implications for evolutionary theory, ecological and systems biology, and clinical medicine.


Assuntos
Fulerenos/farmacologia , Modelos Biológicos , Oligopeptídeos/farmacologia , Feromônios/farmacologia , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Hormese , Humanos , Ligantes , Fagocitose/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Tetrahymena/efeitos dos fármacos , Tetrahymena/metabolismo
17.
Molecules ; 26(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069614

RESUMO

Rhodopsin is the G protein-coupled receptor of rod photoreceptor cells that mediates vertebrate vision at low light intensities. Mutations in rhodopsin cause inherited retinal degenerative diseases such as retinitis pigmentosa. Several therapeutic strategies have attempted to address and counteract the deleterious effect of rhodopsin mutations on the conformation and function of this photoreceptor protein, but none has been successful in efficiently preventing retinal degeneration in humans. These approaches include, among others, the use of small molecules, known as pharmacological chaperones, that bind to the receptor stabilizing its proper folded conformation. Valproic acid, in its sodium valproate form, has been used as an anticonvulsant in epileptic patients and in the treatment of several psychiatric disorders. More recently, this compound has been tested as a potential therapeutic agent for the treatment of retinal degeneration associated with retinitis pigmentosa caused by rhodopsin mutations. We now report on the effect of sodium valproate on the conformational stability of heterologously expressed wild-type rhodopsin and a rhodopsin mutant, I307N, which has been shown to be an appropriate model for studying retinal degeneration in mice. We found no sign of enhanced stability for the dark inactive conformation of the I307N mutant. Furthermore, the photoactivated conformation of the mutant appears to be destabilized by sodium valproate as indicated by a faster decay of its active conformation. Therefore, our results support a destabilizing effect of sodium valproate on rhodopsin I307N mutant associated with retinal degeneration. These findings, at the molecular level, agree with recent clinical studies reporting negative effects of sodium valproate on the visual function of retinitis pigmentosa patients.


Assuntos
Receptores Acoplados a Proteínas G/efeitos dos fármacos , Rodopsina/química , Ácido Valproico/farmacologia , Animais , Humanos , Mutação , Conformação Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Retinite Pigmentosa/metabolismo , Rodopsina/metabolismo
18.
Molecules ; 26(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070457

RESUMO

Cisplatin and derivatives are highly effective in the treatment of a wide range of cancer types; however, these metallodrugs display low selectivity, leading to severe side effects. Additionally, their administration often results in the development of chemoresistance, which ultimately results in therapeutic failure. This scenario triggered the study of other transition metals with innovative pharmacological profiles as alternatives to platinum, ruthenium- (e.g., KP1339 and NAMI-A) and gold-based (e.g., Auranofin) complexes being among the most advanced in terms of clinical evaluation. Concerning the importance of improving the in vivo selectivity of metal complexes and the current relevance of ruthenium and gold metals, this review article aims to survey the main research efforts made in the past few years toward the design and biological evaluation of target-specific ruthenium and gold complexes. Herein, we give an overview of the inorganic and organometallic molecules conjugated to different biomolecules for targeting membrane proteins, namely cell adhesion molecules, G-protein coupled receptors, and growth factor receptors. Complexes that recognize the progesterone receptors or other targets involved in metabolic pathways such as glucose transporters are discussed as well. Finally, we describe some complexes aimed at recognizing cell organelles or compartments, mitochondria being the most explored. The few complexes addressing targeted gene therapy are also presented and discussed.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Compostos de Ouro/farmacologia , Compostos de Rutênio/farmacologia , Antineoplásicos/administração & dosagem , Moléculas de Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/administração & dosagem , Compostos de Ouro/administração & dosagem , Humanos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores de Fatores de Crescimento/efeitos dos fármacos , Compostos de Rutênio/administração & dosagem
19.
J Cell Physiol ; 236(12): 8137-8147, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34133753

RESUMO

Thiazolidinediones are synthetic PPARγ ligands that enhance insulin sensitivity, and that could increase insulin secretion from ß-cells. However, the functional role and mechanism(s) of action in pancreatic ß-cells have not been investigated in detail.


Assuntos
Adenilil Ciclases/efeitos dos fármacos , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Tiazolidinedionas/farmacologia , Animais , Humanos , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ligantes , Receptores Acoplados a Proteínas G/efeitos dos fármacos
20.
Biosci Biotechnol Biochem ; 85(7): 1563-1571, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-33988673

RESUMO

In the late 1970s, we discovered that toxic bicyclic phosphates inhibit the generation of miniature inhibitory junction potentials, implying their antagonism of γ-aminobutyric acid (GABA) receptors (GABARs; GABA-gated chloride channels). This unique mode of action provided a strong incentive for our research on GABARs in later years. Furthermore, minor structural changes conferred insect GABAR selectivity to this class of compounds, convincing us of the possibility of GABARs as targets for insecticides. Forty years later, third-generation insecticides acting as allosteric modulator antagonists at a distinctive site of action in insect GABARs were developed. G protein-coupled receptors (GPCRs) are also promising targets for pest control. We characterized phenolamine receptors functionally and pharmacologically. Of the tested receptors, ß-adrenergic-like octopamine receptors were revealed to be the most sensitive to the acaricide/insecticide amitraz. Given the presence of multiple sites of action, ion channels and GPCRs remain potential targets for invertebrate pest control.


Assuntos
Inseticidas/farmacologia , Canais Iônicos/efeitos dos fármacos , Controle de Pragas/métodos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Animais , Descoberta de Drogas , Receptores de GABA/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...